A common polymorphism in extracellular superoxide dismutase affects cardiopulmonary disease risk by altering protein distribution.
نویسندگان
چکیده
BACKGROUND The enzyme extracellular superoxide dismutase (EC-SOD; SOD3) is a major antioxidant defense in lung and vasculature. A nonsynonomous single-nucleotide polymorphism in EC-SOD (rs1799895) leads to an arginine to glycine amino acid substitution at position 213 (R213G) in the heparin-binding domain. In recent human genetic association studies, this single-nucleotide polymorphism attenuates the risk of lung disease, yet paradoxically increases the risk of cardiovascular disease. METHODS AND RESULTS Capitalizing on the complete sequence homology between human and mouse in the heparin-binding domain, we created an analogous R213G single-nucleotide polymorphism knockin mouse. The R213G single-nucleotide polymorphism did not change enzyme activity, but shifted the distribution of EC-SOD from lung and vascular tissue to extracellular fluid (eg, bronchoalveolar lavage fluid and plasma). This shift reduces susceptibility to lung disease (lipopolysaccharide-induced lung injury) and increases susceptibility to cardiopulmonary disease (chronic hypoxic pulmonary hypertension). CONCLUSIONS We conclude that EC-SOD provides optimal protection when localized to the compartment subjected to extracellular oxidative stress: thus, the redistribution of EC-SOD from the lung and pulmonary circulation to the extracellular fluids is beneficial in alveolar lung disease but detrimental in pulmonary vascular disease. These findings account for the discrepant risk associated with R213G in humans with lung diseases compared with cardiovascular diseases.
منابع مشابه
Association of SHANK3 Gene Polymorphism and Parkinson Disease in the North of Iran
Introduction: Parkinson Disease (PD), the second most common chronic neurodegenerative disorder, is characterized by tremor, bradykinesia, rigidity, and postural instability. SHANK3 (SH3 and multiple ankyrin repeat domain 3) belongs to the extremely conserved ProSAP/ Shank family of synaptic scaffolding proteins. Meanwhile, rs9616915 is a non-synonymous SNP (T>C) located in the exon 6 of the SH...
متن کاملGenetic polymorphisms of superoxide dismutase-1 A251G and catalase C-262T with the risk of colorectal cancer
Oxidative stress is significant in numerous types of disease including cancer. To protect cells and organs against reactive oxygen species (ROS), the body has evolved an antioxidant protection system that involved in the detoxification of ROS. Single nucleotide polymorphisms (SNP) of anti-oxidative enzymes may dramatically change the activity of the encoded proteins; therefore, certain alleles ...
متن کاملNitric oxide synthase and superoxide dismutase gene polymorphisms in Behçet disease.
OBJECTIVE To investigate the association of endothelial nitric oxide synthase (NOS), inducible NOS, manganese superoxide dismutase (SOD), and extracellular SOD gene polymorphisms with susceptibility to Behçet disease (BD) in Japan. METHODS Seventy-eight consecutive Japanese patients with BD and 107 healthy control subjects were genotyped by polymerase chain reaction or polymerase chain reacti...
متن کاملManganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease.
AIMS Oxidative damage promotes atherosclerosis. Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme localized in mitochondria. We investigated the associations of the MnSOD polymorphism (valine-to-alanine in the mitochondrial-targeting domain) with its activity in leukocytes, with macrophage apoptosis by oxidized low-density lipoprotein (oxLDL), and with coronary artery disease (CAD...
متن کاملThe mitochondrial superoxide dismutase A16V polymorphism in the cardiomyopathy associated with hereditary haemochromatosis.
The A16V mitochondrial targeting sequence polymorphism influences the antioxidant activity of MnSOD, an enzyme involved in neutralising iron induced oxidative stress. Patients with hereditary haemochromatosis develop parenchymal iron overload, which may lead to cirrhosis, diabetes, hypogonadism, and heart disease. The objective of this study was to determine in patients with haemochromatosis wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Cardiovascular genetics
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2014